NASA Space Place January 2017
This article is provided by NASA Space Place.
With articles, activities, crafts, games, and lesson plans, NASA Space Place encourages everyone to get excited about science and technology.
Visit spaceplace.nasa.gov to explore space and Earth science!



Comet Campaign: Amateurs Wanted
By Marcus Woo

In a cosmic coincidence, three comets will soon be approaching Earth—and astronomers want you to help study them. This global campaign, which will begin at the end of January when the first comet is bright enough, will enlist amateur astronomers to help researchers continuously monitor how the comets change over time and, ultimately, learn what these ancient ice chunks reveal about the origins of the solar system.

Over the last few years, spacecraft like NASA's Deep Impact/EPOXI or ESA's Rosetta (of which NASA played a part) discovered that comets are more dynamic than anyone realized. The missions found that dust and gas burst from a comet's nucleus every few days or weeks—fleeting phenomena that would have gone unnoticed if it weren't for the constant and nearby observations. But space missions are expensive, so for three upcoming cometary visits, researchers are instead recruiting the combined efforts of telescopes from around the world.

"This is a way that we hope can get the same sorts of observations: by harnessing the power of the masses from various amateurs," says Matthew Knight, an astronomer at the University of Maryland.

By observing the gas and dust in the coma (the comet's atmosphere of gas and dust), and tracking outbursts, amateurs will help professional researchers measure the properties of the comet's nucleus, such as its composition, rotation speed, and how well it holds together.

The observations may also help NASA scout out future destinations. The three targets are so-called Jupiter family comets, with relatively short periods just over five years—and orbits that are accessible to spacecraft. "The better understood a comet is," Knight says, "the better NASA can plan for a mission and figure out what the environment is going to be like, and what specifications the spacecraft will need to ensure that it will be successful."

The first comet to arrive is 41P/Tuttle-Giacobini-Kresak, whose prime window runs from the end of January to the end of July. Comet 45P/Honda-Mrkos-Pajdusakova will be most visible between mid-February and mid-March. The third target, comet 46P/Wirtanen won't arrive until 2018.

Still, the opportunity to observe three relatively bright comets within roughly 18 months is rare. "We're talking 20 or more years since we've had anything remotely resembling this," Knight says. "Telescope technology and our knowledge of comets are just totally different now than the last time any of these were good for observing."

For more information about how to participate in the campaign, visit **link**.


Want to teach kids about the anatomy of a comet? Go to the NASA Space Place and use Comet on a Stick activity! **link**




An orbit diagram of comet 41P/Tuttle-Giacobini-Kresak on February 8, 2017—a day that falls during the comet’s prime visibility window. The planets orbits are white curves and the comet’s orbit is a blue curve. The brighter lines indicate the portion of the orbit that is above the ecliptic plane defined by Earth’s orbital plane and the darker portions are below the ecliptic plane. This image was created with the Orbit Viewer applet, provided by the Osamu Ajiki (AstroArts) and modified by Ron Baalke (Solar System Dynamics group, JPL). **link**



NASA Space Place December 2016
This article is provided by NASA Space Place.
With articles, activities, crafts, games, and lesson plans, NASA Space Place encourages everyone to get excited about science and technology.
Visit spaceplace.nasa.gov to explore space and Earth science!



Big Science in Small Packages
By Marcus Woo

About 250 miles overhead, a satellite the size of a loaf of bread flies in orbit. It's one of hundreds of so-called CubeSats—spacecraft that come in relatively inexpensive and compact packages—that have launched over the years. So far, most CubeSats have been commercial satellites, student projects, or technology demonstrations. But this one, dubbed MinXSS ("minks") is NASA's first CubeSat with a bona fide science mission.

Launched in December 2015, MinXSS has been observing the sun in X-rays with unprecedented detail. Its goal is to better understand the physics behind phenomena like solar flares – eruptions on the sun that produce dramatic bursts of energy and radiation.

Much of the newly-released radiation from solar flares is concentrated in X-rays, and, in particular, the lower energy range called soft X-rays. But other spacecraft don't have the capability to measure this part of the sun's spectrum at high resolution—which is where MinXSS, short for Miniature Solar X-ray Spectrometer, comes in.

Using MinXSS to monitor how the soft X-ray spectrum changes over time, scientists can track changes in the composition in the sun's corona, the hot outermost layer of the sun. While the sun's visible surface, the photosphere, is about 6000 Kelvin (10,000 degrees Fahrenheit), areas of the corona reach tens of millions of degrees during a solar flare. But even without a flare, the corona smolders at a million degrees—and no one knows why.

One possibility is that many small nanoflares constantly heat the corona. Or, the heat may come from certain kinds of waves that propagate through the solar plasma. By looking at how the corona's composition changes, researchers can determine which mechanism is more important, says Tom Woods, a solar scientist at the University of Colorado at Boulder and principal investigator of MinXSS: "It's helping address this very long-term problem that's been around for 50 years: how is the corona heated to be so hot."

The $1 million original mission has been gathering observations since June.

The satellite will likely burn up in Earth's atmosphere in March. But the researchers have built a second one slated for launch in 2017. MinXSS-2 will watch long-term solar activity—related to the sun's 11-year sunspot cycle—and how variability in the soft X-ray spectrum affects space weather, which can be a hazard for satellites. So the little-mission-that-could will continue—this time, flying at a higher, polar orbit for about five years.

If you’d like to teach kids about where the sun’s energy comes from, please visit the NASA Space Place: **link**




Astronaut Tim Peake on board the International Space Station captured this image of a CubeSat deployment on May 16, 2016. The bottom-most CubeSat is the NASA-funded MinXSS CubeSat, which observes soft X-rays from the sun—such X-rays can disturb the ionosphere and thereby hamper radio and GPS signals. (The second CubeSat is CADRE — short for CubeSat investigating Atmospheric Density Response to Extreme driving - built by the University of Michigan and funded by the National Science Foundation.) Credit: ESA/NASA


NASA Space Place November 2016
This article is provided by NASA Space Place.
With articles, activities, crafts, games, and lesson plans, NASA Space Place encourages everyone to get excited about science and technology.
Visit spaceplace.nasa.gov to explore space and Earth science!



Dimming stars, erupting plasma, and beautiful nebulae
By Marcus Woo



Boasting intricate patterns and translucent colors, planetary nebulae are among the most beautiful sights in the universe. How they got their shapes is complicated, but astronomers think they've solved part of the mystery—with giant blobs of plasma shooting through space at half a million miles per hour.

Planetary nebulae are shells of gas and dust blown off from a dying, giant star. Most nebulae aren't spherical, but can have multiple lobes extending from opposite sides—possibly generated by powerful jets erupting from the star.

Using the Hubble Space Telescope, astronomers discovered blobs of plasma that could form some of these lobes. "We're quite excited about this," says Raghvendra Sahai, an astronomer at NASA's Jet Propulsion Laboratory. "Nobody has really been able to come up with a good argument for why we have multipolar nebulae."

Sahai and his team discovered blobs launching from a red giant star 1,200 light years away, called V Hydrae. The plasma is 17,000 degrees Fahrenheit and spans 40 astronomical units—roughly the distance between the sun and Pluto. The blobs don't erupt continuously, but once every 8.5 years.

The launching pad of these blobs, the researchers propose, is a smaller, unseen star orbiting V Hydrae. The highly elliptical orbit brings the companion star through the outer layers of the red giant at closest approach. The companion's gravity pulls plasma from the red giant. The material settles into a disk as it spirals into the companion star, whose magnetic field channels the plasma out from its poles, hurling it into space. This happens once per orbit—every 8.5 years—at closest approach.

When the red giant exhausts its fuel, it will shrink and get very hot, producing ultraviolet radiation that will excite the shell of gas blown off from it in the past. This shell, with cavities carved in it by the cannon-balls that continue to be launched every 8.5 years, will thus become visible as a beautiful bipolar or multipolar planetary nebula.

The astronomers also discovered that the companion's disk appears to wobble, flinging the cannonballs in one direction during one orbit, and a slightly different one in the next. As a result, every other orbit, the flying blobs block starlight from the red giant, which explains why V Hydrae dims every 17 years. For decades, amateur astronomers have been monitoring this variability, making V Hydrae one of the most well-studied stars.

Because the star fires plasma in the same few directions repeatedly, the blobs would create multiple lobes in the nebula—and a pretty sight for future astronomers.

If you’d like to teach kids about how our sun compares to other stars, please visit the NASA Space Place: **link**





This four-panel graphic illustrates how the binary-star system V Hydrae is launching balls of plasma into space. Image credit: NASA/ESA/STScI



Go to page  1 2 [3] 4 ... 10 11 12
This site is powered by e107, which is released under the terms of the GNU GPL License.!

'interfectus' by jalist